倒数的认识教学设计

时间:2024-07-14 13:53:09
倒数的认识教学设计

倒数的认识教学设计

作为一无名无私奉献的教育工作者,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?以下是小编为大家收集的倒数的认识教学设计,欢迎阅读与收藏。

倒数的认识教学设计1

教学内容:

新人教版六年级数学上册第28页的例1。

教学目标:

1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

教学重点:

理解倒数的意义,学会求倒数的方法。

教学难点:

熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

教学准备:

多媒体课件。

教学过程:

一、猜字游戏导入,揭示课题。

上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

师:谁还能说出这样的数?(课件出示)

象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

二、出示学习目标:

1、理解倒数的意义。

2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

三、自主探究新知

(一)探究讨论,理解倒数的意义。

1、(课件出示教材第24页例1的四个算式。)

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

(二)深化理解。

1、乘积是1的两个数存在着怎样的倒数关系呢?

举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1、讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7

所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

四、堂堂清作业

(一)填一填。(出示课件)

1、乘积是()的()个数()倒数。

2、a和b互为倒数,那a的倒数是(),b的倒数是()。

3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

4、一个真分数的倒数一定是()。

(二)判断题。(演示课件)

1、5/3是倒数。()

2、因为3/4×4/3=,所以4/3是倒数。()

3、真分数的倒数大于1,假分数的倒数小于1。()

4、因为1/4+3/4=1,所以1/4和/4互为倒数。()

(三)说一说。(课本第29页的第3题)

五、课堂小结:

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

倒数的认识

乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

倒数的认识教学设计2

教材分析:

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:

知道倒数的意义和会求一个数的倒数

教学难点:

1、0的倒数的求法。

教具准备:

课件

教学过程:

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老 ……此处隐藏14632个字……尽可能多的学生说说它们是怎么互为倒数的。

明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

(二)课堂练习:求一个数的倒数。

1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

2、师:完成教材P45“填一填”

5/87/462/310.8(补充)

让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

3、讨论:0有倒数吗?学生交流。

板书:0和任何数相乘都不能得到1,所以0没有倒数。

4、完成P47课堂活动的对口令。

汇报时让学生说一说谁是谁的倒数。

(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

5、出示判断:

(1)得数为1的两个数互为倒数。()

(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

(3)互为倒数的两个数乘积一定是1。()

(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )

(5)a是1/a的倒数,1/a是a的倒数。()

(6)a/b是b/a的倒数,b/a是a/b的倒数。()

6、探索求真分数和假分数的倒数的特点。

学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

倒数的认识教学设计15

学习目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

3、激情投入,挑战自我。

教学重点:

求一个数倒数的方法。

教学难点:

1和0倒数的问题。

教学过程:

离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!

一、导入:

同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?

生:上下两部分调换了位置,变成了另一个字。

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?

二、合作探究:

(一)揭示倒数的意义

1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)

师板书:乘积是1的两个数互为倒数。

你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)

师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。

(二)小组探究求一个倒数的方法

1.出示例题2课件:下面哪两个数互为倒数?

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

师板书:求倒数的方法:分数的分子、分母交换位置。

同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

3.出示课件想一想。

我的发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

4.探讨带分数、小数的倒数的求法

师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)

你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

发现1:带分数的倒数都(小于)本身;

发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

(三)学以致用:

师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

1.想不想检验一下自己学的怎么样?

请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

2.(课件出示)请你以打手势的形式告诉老师你的答案。

(四)全课总结

今天学习了什么?我们一起回顾总结出来好吗?

什么叫倒数?怎样找出一个数的倒数?

《倒数的认识教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式