分数的基本性质教学反思

时间:2024-06-20 09:29:13
分数的基本性质教学反思15篇

分数的基本性质教学反思15篇

作为一名优秀的人民教师,我们的工作之一就是教学,对教学中的新发现可以写在教学反思中,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的分数的基本性质教学反思,仅供参考,大家一起来看看吧。

分数的基本性质教学反思1

一课是本册教材第六单元的一个内容。这部内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得非常的重要。

本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,首先我以故事导入,来激发学生的学习兴趣。我设计了老和尚给三个小和尚分饼的故事,结果看似不公,实则相同,让学生做裁判评一评,这样,学生学习数学的兴趣必然提高,等学生理解并掌握了分数的基本性质后,学生就明白了。这样,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。教学中采取小组合作学习的形式,提高学生学习的主动性。整堂课我让学生充分展开讨论,课堂气氛非常的活跃,学生学习数学的兴趣十分浓厚。在巩固提高环节,我课前就设计好了题型变化的练习题。注意到了练习题难度的层次性,这样学生的解题能力和思维能力都得到了培养。

总体来说,本节课突出了分数的基本性质的归纳和理解,学生能较好地理解性质中的关键词“同时”、“相同的数”和“0除外”,对分子分母的变化特点能抓住关键,发现变化的规律。

分数的基本性质教学反思2

一、充分挖掘教学资源,激发学生的学习兴趣。

数学知识来源于生活,又服务于生活,为了使学生感到生活中无处不在的数学,有着无穷的奥秘,引起学生的好奇和激情,使其产生强烈的愿望,在这节课伊始,施老师用谜语引入教学,充分挖掘教学资源,贴近了生活,唤起了学生的兴趣。

二、注重自主探索,培养学生主动获取知识的能力。

美国心理学家布鲁纳说过:数学的生命在于探索。教师的任务是让学生亲历探索的过程,在探索中发现,在探索中创新。教学中,施老师始终把学生放在主体的地位,让学生自主探索分数之间的联系,从而发现规律,归纳出分数的基本性质,在这其中让学生折一折,形象感知分数的基本性质;再让学生看一看,发现规律;然后又针对性地设计两个判断题,让学生进一步理解分数的基本性质,从而总结出分数的基本性质。这一教学大大强化了学生的主体意识,更重要的是让学生在学习科学探究的方法,培养学生主动获取知识的能力。

分数的基本性质教学反思3

分数的基本性质教学反思

分数的基本性质一课是本册教材第四单元的一个资料。这部资料是学生在学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得十分的重要。

本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,我想用故事来贯穿整个教学过程。

(一)情境的创设。

课的开始,我讲了一个猴妈妈分大饼的故事,(同学们,你们听故事吗,那老师给大家讲一个故事。猴山上的猴子最爱吃猴妈妈做的大饼了。有一天,猴妈妈做了3只大小一样的饼,他把第一只饼平均切成了4块,拿了一块给第一只猴子。第二只猴子看见了说:“妈妈,我要2块,我要2块。”于是,猴妈妈把第2只饼平均切成8块,拿了2块给第二只猴子。第三只猴子更贪,说:“妈妈,我要4块,我要4块。”于是,猴妈妈把第3只饼平均切成16块,拿了4块给第二只猴子。同学们,你们明白哪知猴子分得多吗?)透过分大饼这一故事目的是想创设了一种和谐愉悦的气氛,能激发学生的学习兴趣,更能激起学生探索新知的欲望。在课堂实施中,我发现学生还是爱听故事的,从这个故事中学生也能说出分到的饼的大小是一样的。并能十分流利地说出了每个猴子分到每个饼的1/4,2/8,4/16。之后我提出疑问,既然你们刚才说到三只猴子分到的饼一样多,那就意味着这三个分数的大小是相等的,那我们还没有学过分子和分母不一样的分数的大小比较,你怎样明白这3个分数大小相等呢?就引出了规律的探索的第一步。

(二)、规律的探索。

在故事中学生得出这3个分数大小相同后,为了给学生创设个性化的学习空间,我对学生说你能够根据老师发给你的材料来验证这三个分数的大小,如果你觉得不需要这些材料,那也能够不用。这样的设计我的目的是能够给予学生必须的探究空间,同时也增添活动的趣味性和挑战性。在学生实际操作中我发现,有的学生用3个大小一样的圆、有的用3张大小一样的长方形纸,也有的学生用了分数和除法的关系,运用这个关系的时候还用到了我们以前学过的商不变性质,解决了这3个分数的大小是相等的。因为在这个环节中有学生利用商不变性质来解决了这3个分数的大小,所以在揭示分数的基本性质后也没有再提出和商不变性质的关系。本来当学生透过实践的操作后发现这三个分数的大小是相等后,我追问:猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你能说出一组相等的分数吗?这个追问我的目的是等一下让学生观察规律时,只有一组分数觉得太少了,所以那里让学生再说出一组分数,带给更多的学习材料,以便学生更好的观察。在试教的时候,发现学生观察的时候不是一组一组观察,而是上下观察,所以本节课我就把这个环节做了调整。然后在老师的引导下,学生的独立思考,同桌的合作交流以及全班学生的交流,并

透过老师的板书,很清楚的观察到分子和分母是怎样变化的。因为这个规律只是在这1组分数中得出的,还不能代表这个规律是正确的,因此我提出疑问,是不是所有的分数只要分子和分母同时乘或除以相同的数,分数大小就不变呢?意思是让学生再举出一些例子来验证自己刚才发现的规律是确。听课的老师问我这个环节设计在那里是什么意思,有没有必要,他们感觉那里浪费了很多的时间,以前也听过这一课,当时这位老师是没有让学生去验证自己的发现是不是正确的,之后听课的老师说到就凭一组材料来发现这个规律是不是太少了,是不是就应带给更多的材料让学生去发现。让学生去验证自己的发现。所以这个环节我就抱着试一试的态度去上的,结果发现效果也不是很好,看来这个环节到底怎样上还得研究。最后自己发现的规律和书上的规律进行比较,得出相同的数“零”要除外的,从而完善规律。最后让学生说说这个规律中哪些字十分的重要,并仔细严读,更加牢固地掌握这条规律。当学生已经理解并掌握这个规律后,尝试让学生去解决生活中一些问题,因此在教学例2前,我出示了我们有2/5的学生参加学校的书法小组,有4/10的学生参加舞蹈小组,哪组参加的人数多?这样设计主要是 ……此处隐藏10489个字……分数只要分子和分母同时乘或除以相同的数,分数大小就不变呢?意思是让学生再举出一些例子来验证自我刚才发现的规律是确。听课的教师问我这个环节设计在那里是什么意思,有没有必要,他们感觉那里浪费了很多的时间,以前也听过这一课,当时这位教师是没有让学生去验证自我的发现是不是正确的,之后听课的教师说到就凭一组材料来发现这个规律是不是太少了,是不是就应带给更多的材料让学生去发现。让学生去验证自我的发现。所以这个环节我就抱着试一试的态度去上的,结果发现效果也不是很好,看来这个环节到底怎样上还得研究。最终自我发现的规律和书上的规律进行比较,得出相同的数零要除外的,从而完善规律。最终让学生说说这个规律中哪些字十分的重要,并仔细严读,更加牢固地掌握这条规律。当学生已经理解并掌握这个规律后,尝试让学生去解决生活中一些问题,所以在教学例2前,我出示了我们有25的学生参加学校的书法小组,有410的学生参加舞蹈小组,哪组参加的人数多?这样设计主要是为例2做铺垫,并让学生感受到化成分母相同并且大小

不变的分数是为以后分数大小的比较做好准备。做例2之前,我更关注的是如何让学生来理解这个题目的意思,让学生明白在做题目之前要先理解题目的意思,在课堂的实施中,发现学生理解的相当透彻。当请一位学生上来做的时候,这位学生直接在23的后面乘以4,之后我让学生擦掉,直接写答案,听课的教师说,为什么擦,我也说不出什么理由,但仔细一想,如果学生的这个错误好好的利用,那是十分值得的,因为那里一能够帮忙后进生理解利用分数的基本性质去怎样做,二注意书写的格式。由于比较紧张,也没有多大思考,所以就错过了一次很好的展示机会。最终由于时间比较紧,也没有用这个故事串联起来,本来那里还想问学生一个问题,说说猴妈妈是运用什么规律来满足三只猴子的要求,并且是分的这么公平的呢?如果小猴子要分4块,那候王怎分才公平呢?如果要5块呢?这个其实是思维的拓展,没有好好的利用,十分可惜。所以对后面的练习带来了麻烦。

(三)练习的设计

为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习用心性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面能够集中学生的注意力,另一方面也能够放松学生的情绪,让他们在简单愉快的氛围里学习知识,本课中设计了:①填空。35=3×()5×()=9()

4()=4860

749=3()=()7=

②决定。

①525=5÷5=25÷5=5×12=25×12

②1220=12+2=20+2=1424

③25=2×25=45

④58=5÷58×8=164

③游戏。教师写一个分数,你能写出和教师相等的分数?你能写几个?写的完吗?在写的时候,你是怎样想的?

④1a=7b(a和b是不为0的自然数),当a=1、2、3、4的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?

由于时间紧张,所以练习的设计与原先的有所区别,只让学生填了4个很简单的填空,第二个练习是我写了一个分数13,比一比在最短的时间里,看哪个同学写的分数多,并且大小相等。在巡视的时候,我看到大部分学生是后一个分数的分子和分母是前一个分数的分子和分母2倍,然后就叫了一个学生回答,也没有肯定这位学生是回答的正确还是错误的,就急着把自我的想法写在黑板上,13=26=39=412,让学生说说看,教师写的对吗?因为课堂上的例子都是后一个分数与前一个分数都是2倍,3倍的关系,所以他们都说错了?原因是第3个分数的分子和分母不是第2个分数分子和分母2倍关系。时间紧迫,也没有好好的去利用这题。总之,一节课下来,问题多多,值得反思。

分数的基本性质教学反思15

上周我教了《分数的基本性质》一课,分数的基本性质一课是本册教材第四单元的一个内容。这部内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得非常的重要。

本节课我就谈谈自己的一些想法。

(一)情境的创设,游戏引入。

课的开始,我讲了一个兔妈妈分大饼的故事,(同学们,你们听故事吗,那老师给大家讲一个故事。兔山上的兔子最爱吃兔妈妈做的大饼了。有一天,兔妈妈做了3只大小一样的饼,他把第一只饼平均切成了4块,拿了一块给第一只兔子。第二只兔子看见了说:“妈妈,我要2块,我要2块。”于是,兔妈妈把第2只饼平均切成8块,拿了2块给第二只兔子。第三只兔子更贪,说:“妈妈,我要4块,我要4块。”于是,兔妈妈把第3只饼平均切成16块,拿了4块给第二只兔子。同学们,你们知道哪知兔子分得多吗?)通过分大饼这一故事目的是想创设了一种和谐愉悦的气氛,能激发学生的学习兴趣,更能激起学生探索新知的欲望。在课堂实施中,我发现学生还是爱听故事的,从这个故事中学生也能说出分到的饼的大小是一样的。并能非常流利地说出了每个兔子分到每个饼的1/4,2/8,4/16。接着我提出疑问,既然你们刚才说到三只兔子分到的饼一样多,那就意味着这三个分数的大小是相等的,那我们还没有学过分子和分母不一样的分数的大小比较,你怎么知道这3个分数大小相等呢?就引出了规律的探索的第一步。

(二)引导发现、探索规律。

在故事中学生得出这3个分数大小相同后,为了给学生创设个性化的学习空间,我对学生说你可以根据老师发给你的材料来验证这三个分数的大小,如果你觉得不需要这些材料,那也可以不用。这样的设计我的目的是能够给予学生一定的探究空间,同时也增添活动的趣味性和挑战性。在学生实际操作中我发现,有的学生用3个大小一样的圆、有的用3张大小一样的长方形纸,也有的学生用了分数和除法的关系,运用这个关系的时候还用到了我们以前学过的商不变性质,解决了这3个分数的大小是相等的。

(三)练习的设计

为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本课中设计了:

①填空。3/5=3×-/5×-=9/-

4/-=48/60

7/49=3/-=-/7=……

②判断。

①5/25=5÷5=25÷5=5×12=25×12

②12/20=12+2=20+2=14/24

③2/5=2×2/5=4/5

④5/8=5÷5/8×8=1/64

③游戏。老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?

④1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4……的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?

由于时间紧迫,也没有好好的去利用。总之,一节课下来,问题多多,值得反思。

《分数的基本性质教学反思15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式